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Theme

Quantifying and managing uncertainty in CFD
analysis and design is a challenging research area
with numerous, non-traditional customers for the

CFD community
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Outline

• Why bother to account for uncertainty in aerodynamic
analysis and design?

• Uncertainty quantification techniques
• Design under uncertainty methods
• Challenges
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Who Cares About Aerodynamics
Uncertainty?

• NASA space program managers want uncertainty
estimates to accompany systems studies that support
decisions on next generation reusable launch vehicles

• CFD managers in aerospace companies would make
wider use of CFD if results were accompanied by
uncertainty estimates

• Structural engineers engaged in reliability-based design
need uncertainty distributions

• Controls engineers want aero uncertainty estimates to
reduce risk in control law design

• The DoE ASCI Program has a major thrust in
uncertainty quantification



November 6, 2001Thomas Zang

NASA Advanced Space Transportation Goals
(http://www.aero-space.nasa.gov/goals/ast.htm)

• Access to Space Objective
– Reduce the incidence of crew loss by an order of magnitude in

10 years and an additional two orders of magnitude in 25 years
– Reduce the cost to low-Earth orbit by an order of magnitude in

10 years and another order of magnitude in 25 years

• Medium/Heavy Payload Challenges
– Increase system reliability and performance margins through

more robust designs and functional redundancy
– Optimize system design cycle times

• Small Payload Challenges
– Provide the capability for rapid development and production of

highly reliable systems
– Provide the capability for increased performance margins
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CFD Today is Used in a Very Small Region
of the Flight Envelop
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Aero Performance Uncertainty Targets
(±2 σσσσ)

• Lift Coefficient
– Absolute 0.010
– Increment 0.005

• Drag Coefficient
– Absolute 0.00010
– Increment 0.00005

• Pitching Moment Coefficient
– Absolute 0.0010
– Increment 0.0005

• References
– Steinle, F., and Stanewsky, E., AGARD-AR-184, November 1982.
– Carter, E. C., and Pallister, K. C., Chapter 11 in AGARD-CP-429,

July 1988.
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AIAA APA TC Drag Prediction Workshop
June 9-10, 2001

• 14 codes were used:
– 7 structured
– 6 unstructured
– 1 Cartesian

• 35 solutions for the drag point at CL=0.5, M=0.75
– 17 used Spalart-Allmaras turbulence model
– 17 used a two-equation turbulence model
– 1 used Euler-Integral Boundary-Layer method

• References
– Michael J. Hemsch, Statistical Analysis of CFD Solutions from the

Drag Prediction Workshop, AIAA Paper 2002-0842
– http://www.aiaa.org/tc/apa/dragpredworkshop/dpw.html
– http://ad-www.larc.nasa.gov/tsab/cfdlarc/aiaa-dpw/
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Drag at CL=0.5, M=0.75
from Hemsch’s statistical analysis

CD_TOT, All Solutions
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Pitching Moment, All Solutions
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Comparison

• Drag
– Goal: 0.0001
– CFD Dispersion: 0.0021
– Experimental Dispersion: 0.0004

• Pitching Moment
– Goal: 0.001
– CFD Dispersion: 0.008

• Lift (based on scatter in angle of attack)
– Goal: 0.01
– CFD Dispersion: 0.005

• Current uncertainties on CFD predictions at cruise exceed the goal by a
least a factor of 10

• In the parlance of Statistical Process Control, CFD as practiced today is a
process that is out of control

• There is a clear need for approaches to managing the CFD process to
control uncertainties 
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Roll Damping Example

• Simply knowing the sign of Clp with confidence would be
very valuable
Clp: derivative of rolling moment (Cl ) with respect to roll rate p

αeff = α + δα

p, roll rate
αeff = α - δα

With negative roll damping, down-
going wing experiences loss of lift,
causing a “propelling” motion

Clp

α

Unstable Roll Damping

Stable Roll Damping
0
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Structural Loads Example

• The critical load cases (those which have the most
impact on the structural design) are usually at the edge
of the flight envelop

• The accuracy requirements for CFD loads predictions
are nowhere near as stringent as those for cruise
performance

• The emerging probabilistic structural design methods
require probability densities of loads
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Structural Design Approaches

Aero Tools & Data Structures Tools & Data

Factor of Safety Approach

Load Strength

Calculated

Factor of Safety

Calculated

Knock-down

Margin

Probabilistic Approach

Load

Resistance
(strength)

Load or Resistance

Probability
density

Failure Probability 
(overlap region) 
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Stochastic Control Laws Example

• Robust control design (H∞∞∞∞ control) as developed in the
1970s & 1980s relies solely on bounds for the uncertain
parameters

• The goal of current stochastic control law research is to
develop control law design methods that exploit
probability densities for the uncertain parameters

• The control law designers need probability densities for
the uncertain aerodynamics parameters
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Robust Control Synthesis
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Comments

• CFD is not used in the vast majority of the flight
envelop

• The lack of quantitative information on the uncertainty
of the  CFD results is a contributing factor

• The CFD community appears fixated on quantifying
discretization error to the detriment of quantifying
other sources of uncertainty

• The challenges lie in quantifying the source of
uncertainties and in propagating those uncertainties
efficiently through to the “system” level
– uncertainty sources internal to the code

– uncertainty sources input to the code
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Sources of Uncertainty
(Oberkampf & Blottner, AIAA J., 5/98)

• Physical Models
• Auxiliary Physical Models
• Boundary Conditions
• Initial Conditions
• Discretization and Solution
• Round-Off Error
• Programmer and User Error
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Sources of Uncertainty 2
(Oberkampf & Blottner, AIAA J., 5/98)

• Physical Models
– Inviscid Flow

– Viscous Flow

– Incompressible Flow

– Chemically Reacting Gas
– Transitional/Turbulent Flow

• Auxiliary Physical Models
– Equation of State

– Thermodynamic Properties
– Transport Properties

– Chemical Models, Rates

– Turbulence Model
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Sources of Uncertainty 3
(Oberkampf & Blottner, AIAA J., 5/98)

• Boundary Conditions
– Wall, e.g., roughness

– Open, e.g., far-field

– Free Surface

– Geometry Representation

• Initial Conditions
• Discretization and Solution

– Truncation error (spatial and temporal)

– Iterative convergence error

• Round-Off Error
• Programmer and User Error
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Types of Uncertainty

• Variability
– the inherent variation associated with the physical system or the

environment under consideration

• Uncertainty
– a potential deficiency in any phase or activity of the modeling

process that is due to lack of knowledge

• Error
– a recognizable deficiency in any phase or activity of modeling

and simulation that is not due to lack of knowledge
– an error may be either an acknowledged error or an

unacknowledged error

• Reference
– Oberkampf, Diegert, Alvin and Rutherford, Variability, Uncertainty,

and Error in Computational Simulation , ASME-HTD-Vol. 357-2,
1998
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Manufacturing Variability Example
Stereolithographic Measurements of X34 Wind Tunnel Model
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Uncertainty Propagation

• Uncertainty propagation deals with estimating the
uncertainty in a code’s output due to the variabilities,
uncertainties and errors in a code’s input

• We’ll focus on this issue in the middle part of this
presentation
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Uncertainty Propagation Techniques

• Interval Analysis
• Fuzzy Sets
• Sensitivity Estimates
• Moment Methods (e.g., FOSM, SOSM)

• Simulation Methods (e.g. Monte Carlo)
• Stochastic Finite Elements (Ghanem) & Polynomial

Chaos (Karniadakis)

• Reference
– Robert Walters, Uncertainty Analysis for Fluid Mechanics with

Applications, ICASE Report, in press
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1st and 2nd- Order Taylor Series
Approximations for Output F(b)

• Note that efficient first- and second-derivatives are
needed from CFD codes
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Approximate Mean and Variance
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Quasi 1-D Euler Problem
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Mean and Variance Approximations
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Comparison of Statistical Approximations vs.
Monte Carlo Simulation

• For larger values of input parameters, second-order
generally gives better predictions

• Approximations predict first moment more accurately
than second moment

• Reference
– Putko, Newman, Taylor & Green, Approach for Uncertainty

Propagation and Robust Design in CFD Using Sensitivity Derivatives,
AIAA 2001-2528
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Probability Density Functions
from Monte Carlo Simulations

• The actual Monte Carlo results are compared with a normal
distribution using the mean & standard deviation of the Monte
Carlo results (graphically indistinguishable from FOSM & SOSM)

• The FOSM & SOSM results appear adequate for robust design but
not for reliability-based design
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Probabilistic Design Categories

• Robust Design
– a design is sought that is relatively insensitive to small changes

in the uncertain quantities

• Reliability-Based Design
– a design is sought that has a probability of failure that is less

than some acceptable (invariably small) value
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Probabilistic Problem Classification

No engineering
applications

Reliability is
not an issue

Cost-benefit analysis
Robust design and 

optimization

Risk analysis
Reliability-based 

design & optimization

Everyday Fluctuations Extreme Events

Frequency of Event

Impact of Event

Performance
 Loss

Catastrophe
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Probability Density vs. Problem Focus

Random Variable

Probability
Density

Robustness:
Aero Performance
Stochastic Controls

Reliability:
Structures

Controllability

Reliability:
Structures

Controllability
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Robust Aerodynamic Shape Optimization

• Objective
– Minimize drag over a

range of Mach numbers
– Limit the number of

aerodynamic analyses

• Design vector d
– angle of attack and 20

box-constrained y-
coordinates of the control
points for the airfoil
spline

• References
– Luc Huyse, Solving Problems of Optimization Under Uncertainty As

Statistical Decision Problems., AIAA 2001-1519
– Wu Li, Sharon Padula, and Luc Huyse, Robust Airfoil Optimization to

Achieve Consistent Drag Reduction over a Mach Range, ICASE Report
No. 2001-22

FUN2D Grid



November 6, 2001Thomas Zang

Single Design-Point Optimization

• The design vector d (geometry and angle of attack) is
the only variable in the objective

• Fix all other model parameters at their design value.
We consider only 1 free flow Mach number ΜΜΜΜ = ΜΜΜΜdesign

(e.g. average Mach number during cruise stage):
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Problems with Single Point Optimization

• Choice of Mdesign dramatically affects performance
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Multi-Point Optimization

• The design vector d (geometry and angle of attack) is
the only variable in the objective

• Consider multiple design conditions at selected values of
the free flow Mach number

• Objective function is a weighted average of all these
design conditions
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Problems with Four-Point Optimization

• Choice of design conditions affects performance
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Stochastic Optimization

• Modify the objective to directly incorporate the effects
of model uncertainties on the design performance

• Highlight 2 methods:
– Expected Value Optimization

– Second-Order Approximate Results
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Mathematical Formulation

• Minimize the expected value of the drag over the design
lifetime:

( ) ∫∈∈
=

M Md
Dd

dM
Dd

dMMfMdCMdCE )(),(min),(min

Cd is drag function

d is design vector (geometry, angle of attack)

Μ is uncertain parameter (Mach number)

fM is Probability Density Function of Mach number
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Application to Airfoil Problem

• Integrate over the uncertain parameter ΜΜΜΜ, compute the
expected value of Cd with respect to the free flow Mach
number ΜΜΜΜ.

• Minimize this integrated objective with respect to the
design vector d.

• Actual flight data can be readily incorporated in the
probability density function fM(M)
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SOSM Approximation

• Approximate objective by second-order Taylor series
expansion about the mean value of M, and evaluate the
expectation integral analytically
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Comparison with Single Point Opt.
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Direct Evaluation of Integral

• Evaluate integral directly using a numerical integration
method.

• To avoid over-optimization, make sure you select
different integration points for each optimization step.

• We used 4-point integration with random selection of
integration points.
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Comparison with Multi-Point Optimization

• Expect Value design is independent of arbitrary selection of
Mach numbers
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Relative Computational Effort
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Reliability-Based Design Example
Controllability of Reentry Vehicle

• Objective:
– minimize dry weight

• Design Variables (5):
–  configuration parameters

• Constraints (7):
– landing speed; hypersonic,

supersonic, and subsonic trim and
stability levels

• Disciplines (3):
– geometry, aerodynamics, and

weights/sizing

• Probabilistic Formulation:
– Minimize mean weight such that

pitching moment coefficient for 9
scenarios  has a low probability
(less than 0.1) of failing to be
within acceptable bounds [-0.01,
0.01]

Design Variable Range
Fuselage fineness ratio 4 - 7
Wing area ratio 10 – 20
Tip fin area ratio 0.5 - 3
Ballast wt fraction 0 – 0.4
Mass Ratio 7.75 – 8.25
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Reliability-Based Design Results

Optimization Results - Weight
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Some Challenges for CFD Uncertainty
Analysis and Design

• Quantification of transition & turbulence modeling
uncertainty

• Affordable simulation strategies for CFD
• Statistical process control techniques for CFD
• Uncertainty quantification strategies for strongly

nonlinear problems
• Robust design and reliability-based design algorithms

tuned to the characteristics of CFD codes
– iterative solution of nonlinear systems
– efficient sensitivity derivatives

• Sparse data on uncertainty distributions
• Strategies for predicting flight loads based on

computational, wind tunnel and flight test data




